- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Trajcevski, Goce (1)
-
Wu, Jin (1)
-
Yin, Ruiyang (1)
-
Zhang, Kunpeng (1)
-
Zhong, Ting (1)
-
Zhou, Fan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Point-of-interest (POI) recommendation is essential to a variety of services for both users and business. An extensive number of models have been developed to improve the recommendation performance by exploiting various characteristics and relations among POIs (e.g., spatio-temporal, social, etc.). However, very few studies closely look into the underlying mechanism accounting for why users prefer certain POIs to others. In this work, we initiate the first attempt to learn the distribution of user latent preference by proposing an Adversarial POI Recommendation (APOIR) model, consisting of two major components: (1) the recommender (R) which suggests POIs based on the learned distribution by maximizing the probabilities that these POIs are predicted as unvisited and potentially interested; and (2) the discriminator (D) which distinguishes the recommended POIs from the true check-ins and provides gradients as the guidance to improve R in a rewarding framework. Two components are co-trained by playing a minimax game towards improving itself while pushing the other to the boundary. By further integrating geographical and social relations among POIs into the reward function as well as optimizing R in a reinforcement learning manner, APOIR obtains significant performance improvement in four standard metrics compared to the state of the art methods.more » « less
An official website of the United States government
